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Appendix A: Border effects

The propagation curve, x(t), namely the distance trav-
eled by the information in a given time, has a linear form
only for early and intermediate times, whereas for longer
times there is a clear saturation of x(t), Fig. 2. The cause
of this saturation is the border of the flocks. To get the
propagation curve we have assumed that the number of
birds reached by the information, when this has trav-
eled a distance x(t), is proportional to the volume of the
sphere with radius x. But this number of birds is exactly
the rank r(t) of the last bird reached by the information
in a time t, and therefore we have r(t) ∼ x(t)3. This
argument is true in three dimensions and in the bulk,
where no border effects are present.

However, when the information to turn reaches the
border of the flock in some direction, things change,
as the typical number of birds reached by the informa-
tion scales with an exponent smaller than 3. To under-
stand this point, let us make the example of flock with
a disc-like shape. Once the information has reached the
boundary, by traveling a distance equal to the shortest
axis, the problem becomes effectively two-dimensional,
so that r(t) ∼ x(t)2. Similarly, in a tube-shaped flock,
one would get r(t) ∼ x(t) for long enough times. Hence,
in non-spherical systems (as real starling flocks are [1]),
we expect in general that for later times, i.e. once
the information to turn has reached the boundary, the
rank grows like, r(t) ∼ xlate(t)

α, with α < 3. Given
that we use a bulk definition of the traveled distance,
x(t) ≡ r(t)1/3 ∼ xlate(t)

α/3, we expect a saturation of
x(t) for later times, due to the fact that α/3 < 1. This
is indeed what we observe, Fig. 2 and SI-Fig. S3.

Appendix B: The spin

Some theories of collective motion have highlighted
the similarity between flocks and magnets [2, 3]. In par-
ticular, the Hamiltonian in (2) is the same as that of a

ferromagnet, where the birds velocities vi play the role
of magnetic spins [3]. However, in previous descriptions
spins were only virtual, as they did not obey proper Pois-
son rules. Within the present description, things change.

The momentum sz conjugated to the phase ϕ is de-
fined as the local generator of the rotations parametrized
by ϕ, around the z axis. Hence, (sz, ϕ) are general-
ized action-angle canonical variables. The fact that sz
generates the symmetry parametrized by the phase ϕ is
expressed by Poisson relation, {v, sz} = ∂v/∂ϕ = iv,
which in components reads, {vx, sz} = ∂vx/∂ϕ = −vy
and {vy, sz} = ∂vy/∂ϕ = vx. If we interpret vx and vy
as the x, y components of the spin, these equations show
that sz is a true spin, namely the generator of the rota-
tion in the space of the order parameter v. This is the
most general and fundamental definition of spin [4]. Ac-
cordingly, jz = ρs∇ϕ is the spin current and ρs = a2J
is the spin stiffness [5].

It is essential to understand that according to this def-
inition sz is the intrinsic spin, not the orbital angular
momentum of the bird. Let us define external space the
space of the birds coordinates and internal space (or tar-
get space) the space of the order parameter, namely the
planar velocity. Indeed, v(x, t) is a map between the ex-
ternal space R3 × R and the internal space SO(2) (the
circle). The phase ϕ parametrizes rotations in the in-
ternal space of the velocity and it must not be confused
with the orbital angle θ of 2d polar coordinates, which
parametrizes rotations in the external space of positions.
The easiest way to understand this is the following: a
bird flying straight (with respect to an arbitrary fixed
reference frame - that of our cameras, for example) has

ϕ̇ = 0, but θ̇ 6= 0.

As emphasized in the main text, rotations
parametrized by these two angles, ϕ and θ, corre-
spond to two very different types of collective turns.
A rotation parametrized by ϕ corresponds to an equal
radius turn, i.e. a turn in which all birds have the same
radius of curvature and where trajectories cross. On the
other hand, a rotation parametrized by θ corresponds to
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a parallel path turn, typical of rigid bodies. In this kind
of turn, paths do not cross and this implies different
radii of curvature for different points. The generator
of the external θ-rotations is the standard angular
momentum, lz, whereas the generator of the internal
ϕ-rotations is the spin, sz, which is conserved by the
continuity equation.

In order to have some intuition about the physical
nature of sz we must connect external to internal spaces.
This connection is established by the kinematic equation,

ẋ = v0 e
iϕ , (B1)

expressing the simple fact that birds are not anchored
to a lattice, but they follow their velocity vectors. If we
consider the speed v approximately constant, equation
(B1) implies,

ϕ̇ = v0/R , (B2)

where R is the instantaneous radius of curvature. Using
(6), we also get,

ϕ̇ =
sz
χ
, (B3)

so that we finally have,

sz =
v0 χ

R
∼ κ , (B4)

where κ = 1/R is, by definition, the curvature of the
trajectory. Therefore, once the connection with the ex-
ternal space is performed, the spin turns out to be essen-
tially the curvature. This is why a bird flying straight
(R = ∞, κ ∼ 0) has sz ∼ 0, while it has nonzero stan-
dard angular momentum lz. A change (in time) of the
spin siz of bird i, due to the social force exerted by the
neighbours of i, corresponds to a change (in time) of its
instantaneous radius of curvature, Ri, and curvature, κi.
Hence, what actually propagates across the flock during
the turn is a fluctuation (in space and time) of the cur-
vature field, κ(x, t). Before the turn, the flock is flying
almost straight, R � 1, κ ∼ 0, sz ∼ 0. Then the turns
sparks in some part of the flock, causing an increase of
the curvature κ, i.e. an increase of sz. This change
sweeps through space and time until the whole flock has
turned. Finally, after the turn, the flock relaxes back to
R � 1, κ ∼ 0, sz ∼ 0. Mathematically, this propagation
of the curvature, i.e. of sz, derives from the canonical
equations(6): by taking the second derivative with re-
spect to time one obtains a D’Alembert wave equation
for sz(x, t) identical to that obeyed by ϕ(x, t), eq.(8).

Conservation law (7) states that the spin-curvature,
sz(x, t) ∼ κ(x, t), obeys a continuity equation. As we
have seen, this conservation law is crucial to determine
sound-like propagation. Continuity means that the tra-
jectory curvature in a given volume cell of the system
cannot change unless it is transported into, or out of,
that cell by a spin current, jz = ρs∇ϕ. We can refor-
mulate this by saying that, if a certain excess of cur-
vature, namely a strong misalignment among a certain

group of individuals, forms in a given point of the sys-
tem, it cannot be simply dissipated out. Rather, such
excitation creates a social force that makes the neigh-
bours turn, and their neighbours too, and so on, so that
the excess curvature is transported away, instead of be-
ing dissipated.

Finally, note that the spin sz is not the z component
of the velocity. Also note that the rotation generated by
sz is the very transformation under which Hamiltonian
(5) is symmetric.

Appendix C: The generalized moment of inertia

As we have seen, the spin sz is not the standard angu-
lar momentum lz. Accordingly, the generalized moment
of inertia χ, is not the standard moment of inertia, which
in the case of circular motion is, I = mR2, where m is
the mass. So, what is the physical and biological mean-
ing of χ? From the canonical point, the answer is clear:
χ is the inertia to changing ϕ̇. Indeed, equation (8) can
be rewritten as,

χ =
aFs
ϕ̈

, (C1)

where Fs = aJ∇2ϕ is the social force exerted by the
neighbours. Hence, the generalized moment of inertia χ
is defined as the ratio between the social force (the cause)
and the change of angular velocity (the effect). This is
the standard definition of inertia: the ratio between force
(cause) and acceleration (effect). However, in this case
Fs is a generalized (social) force, and aFs is a generalized
torque, hence χ is not the standard moment of inertia.

To better grasp the biological meaning of χ we must,
once again, bridge the gap between internal and external
space. By using equations (B1), (B2) and (C1) we obtain
several cause-effect relations clarifying the physical and
biological meaning of χ. The first relation connects the
social force to the change of radius R, or equivalently to
the change of curvature κ,

χ = −
(
R2

v

)
aFs

Ṙ
=

(
1

v

)
aFs
κ̇

. (C2)

Hence, χ is the resistance of a bird to change its instan-
taneous radius of curvature R (the effect), when a given
social force Fs (the cause) is exerted.

Another interesting relation can be obtained in terms
of the banking angle γ. A banked turn [6, 7] is the typical
way birds (and planes) change their heading. It consists
in a gentle roll, so to form an angle γ between the axis
of the wings and the horizontal plane. In this way, part
of the total lift goes into a centripetal force, Fc = mgγ,
making the bird turn (m is the mass, g the gravitational
acceleration and γ � 1). From (C2), it is straightfor-
ward to prove that,

χ =

(
v

g

)
aFs
γ̇

. (C3)
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According to (C3), the generalized moment of inertia χ
is the resistance of a bird to change its banking angle γ.
Here, γ̇ is the effect of the social force, Fs, and χ sets
the ratio between cause and effect. Notice that equations
(C2) and (C3) are clearly non-canonical definitions of the
inertia χ, because at the denominator they both have a
first order derivative in time, rather than a second order
one, as in the canonical equation (C1).

Let us emphasize once again that χ is not the stan-
dard, mechanical moment of inertia, I = mR2, but
rather a social, or sensorimotor, resistance of the bird
to change R or γ. It is not possible to write an ab inicio
expression for χ in terms of primary mechanical quanti-
ties, like mass, radius, etc. To understand this fact, let
us imagine that at some point the neighbours of bird i
all sharpen their banking angle γ, thus creating a strong
social force, Fs = aJ∇2ϕ, acting on i. What we call a
social ‘force’ is in fact a shortcut to describe a very com-
plex sensorimotor process: a nonzero ∇2ϕ means that
some of the neighbours of i are now about to crash into
i. This is most likely perceived by i, which decides to
change its own γ and make it equal to that of the neigh-
bours, thus avoiding the crash. However, the degree by
which i will react to the imminent crash, or conversely
the resistance to this reaction (which is χ), is the result
of a very complex trade-off. Let us analyze this trade-off
by pretending to be i.

On one side, there is the price of the crash. How
imminent is it? This will depend on both the nearest
neighbour distance and on the mutual velocity. How
bad would that be? Perhaps, I can ignore my neigh-
bours, and just change them, without any real crash.
How confident I am into my capability to change γ? If I
am very agile, I can wait a bit longer before changing my
γ. On the other side, there is the price to changing γ.
How much will it cost me energetically? By increasing γ
I will increase the drag against air, otherwise I fall down.
But to do this I must increase the power, which is costly.
Can I manage to do that?

The generalized moment of inertia χ is the very final
product of this very complicated neural and sensorimotor
process. Clearly, we cannot know a priori its value. But
we can define it, and measure it. This is exactly what
we have done by measuring the speed of propagation of
the turn across the flock. In this sense, the situation is
the same as in real magnetic systems: the parameter χ is
the magnetic susceptibility to an external field coupled
to sz [5], which cannot be simply expressed as a function
of the microscopic parameters of the theory, but it can
be experimentally measured.

Appendix D: Relationship between Φ and J.

The relationship between alignment strength, J , and
polarization, Φ, is a consequence of the Gaussian nature
of the theory in the spin-wave limit, equation (5). The

polarization is the modulus of the magnetization vector,

Φ = ‖ 1

N

∑
i

~vi‖ , (D1)

so that it has values between 0 and 1 (for simplicity we
assume here ‖~v‖ = 1). Using,

~v = eiϕ , (D2)

and expanding the velocity for small values of the phase,
we obtain,

Φ = 1− 1

2

∑
i

ϕ2
i = 1− 1

2
〈ϕ2〉 . (D3)

As expected, the polarization is larger the smaller the
phase fluctuations. The small-ϕ (namely large-Φ) ex-
pansion is called spin-wave approximation. We want to
remark that spin wave approximation has been found to
be accurately verified in real flocks of starlings in pre-
vious works [3]. To compute 〈ϕ2〉 we use the fact that
in the spin-wave limit the probability distribution of the
phase is Gaussian (equation (5)),

P (ϕ) ∼ exp

(
−1

2
β

∫
d3x

a3
ρs(~∇ϕ)2

)
(D4)

= exp

(
−1

2
β

∫
d3k

a3
ρs k

2 ϕkϕ−k

)
, (D5)

where β is the inverse temperature and the stiffness ρs =
a2J is (up to the lattice spacing constant) the strength
of the alignment interaction. We therefore have,

Φ(J, β) = 1− 1

2
〈ϕ2〉 = 1−

∫
d3k

a

βJk2
∼ 1− 1

βJ
. (D6)

This equation has a rather simple meaning: a large po-
larization (Φ ∼ 1) can be obtained either by reducing
the temperature (large β) or by increasing the alignment
coupling constant, J . By inverting equation (D6) we get,

J =
1/β

1− Φ(J, β)
. (D7)

The fact that J seems to diverge for Φ→ 1 may be con-
fusing. To understand this point we must keep in mind
that Φ is a function of both J and β (eq.(D6)). Hence,
the polarization can become very close to 1 even with no
divergence of J : this happens if β increases (low tem-
perature) at fixed J , in which case both the numerator
and denominator of (D7) go to zero, so that J remains
finite. In this case, though, no increase of the second
sound speed cs would be observed, because cs only de-
pends on J , c2s = a2J . On the other hand, if J increases
at constant β, then the polarization Φ approaches 1 and
the second sound speed cs also increases.
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Appendix E: Dissipation

According to Noether’s theorem, the spin conserva-
tion law is present as long as only even derivatives of
the phase with respect to time appear in the equation
of motion, as in the D’Alembert equation. Hence, when
phase-dissipation occurs, i.e. when a term ϕ̇ appears
in the equation of motion, strict conservation no longer
holds. However, we shall show here that as long as dis-
sipation is low, the qualitative results are the same as
in the case of strict conservation. This analysis will also
be useful to understand how the diffusive equation of
motion (4) derived from the standard theory can be ob-
tained as the overdamped limit of the new theory.

We introduce a dissipative term proportional to ϕ̇ in
the equation of motion and obtain,

χ
∂2ϕ

∂t2
+ η

∂ϕ

∂t
− ρs ∇2ϕ = 0 , (E1)

with ρs = a2J and where η is a generalized friction co-
efficient. From this we get the dispersion law,

χω2 − iηω − ρsk2 = 0 . (E2)

In the limit η � χ we simply get the diffusive result,
ω = i(ρs/η)k2. In general, however, we obtain,

ω = i
η

2χ
± csk

√
1− k20/k2 , (E3)

where, as usual, the propagation speed is cs =
√
ρs/χ

and,

k0 ≡
η

2
√
ρsχ

. (E4)

If we define the dissipation time scale, τ ≡ 2χ/η, and
the zero-dissipation frequency, ω0 ≡ csk, we can rewrite
the dispersion law as,

ω = i/τ ± ω0

√
1− k20/k2 . (E5)

With zero dissipation, we get k0 = 0, τ =∞ and ω = ω0,
which is the case we studied in the main text. For η 6= 0,
on the other hand, we have two regimes, according to the
value of the friction coefficient and of the wave number
k. For k ≥ k0 we have attenuated propagating waves, as
the frequency has both a real and an imaginary part. For
k < k0 we have overdamped (or evanescent) waves: the
frequency is purely imaginary, there is no propagation,
but pure exponential decay.

The smallest value of k in the system is kmin ∼ 1/L,
where L is the linear size of the flock. Hence, small
dissipation is defined by the relation,

η <

√
ρsχ

L
: small dissipation . (E6)

With small dissipation there is linear propagation of the
information and the time scale of the exponential decay
is set by τ = 2χ/η. From (E6) we get,

τ >
√
χ/ρs L = L/cs . (E7)

Therefore, small dissipation implies that the damping
time constant is larger than the time the information em-
ploys to travel across the flock. In other words, the signal
is effectively very weakly damped across the length scale
of interest. We conclude that even when a small dissi-
pation is present, propagation of information is qualita-
tively the same as that described by the zero dissipation
theory.

We finally note that the existence of a threshold
momentum k0 implies that a continuum theory devel-
oped to described only the asymptotically correct long-
wavelength hydrodynamics of a flock, i.e. a theory work-
ing in the k → 0 limit, would miss linear propagation of
the phase due to spin conservation, even in very weak
damping. This is the case of the hydrodynamic theory
of Toner-Tu [8], and its later developments [9].

Appendix F: Dimensional analysis

In the novel theory we have an Hamiltonian that is
the sum of two parts. Hence, we have to be careful
with physical dimensions. The phase is of course a pure
number, [ϕ] = [1], whereas the alignment coupling con-
stant has the dimensions of an energy, [J ] = [e]. In
this way the social force has the dimensions of a true
force, [Fs] = [aJ∇2ϕ] = [e · x−1] and the spin has the
dimensions of an angular momentum, [sz] = [e · t], i.e.
of an action. Accordingly, χ has the dimensions of a
true moment of inertia, [χ] = [e · t2]. Notice that the
term appearing in equation (6) is a2J∇2ϕ = aFs, which
is dimensionally a torque. Hence, the derivative of an
angular momentum is a torque, as it should.

By definition, the polarization is a pure number, [Φ] =
[1]. This is why in the relation linking alignment cou-
pling constant to polarization, J = 1/[β(1−Φ)], we need
a dimensional constant with the dimensions of an energy,
[1/β] = [e]. As we have said, 1/β sets the scale of the
noise. Finally, with the above physical dimensions, the
speed of propagation of information across the flock, cs,
is measured in meters per second, as it should.

Appendix G: General off-plane case

Our initial assumption that the birds’ velocities lie
on a plane during the turn, namely that the turn has
very small torsion, although experimentally satisfied (see
Fig.1b,c), is not at all a necessary condition for our math-
ematical description. The most general formulation of
our result holds even with a truly 3d order parameter vi
[5].
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If we assume that the mean direction of motion of the
flock points in the x direction, then there will be full
3d fluctuations of the individual velocities vi around the
overall direction of motion of the flock, generating small
components of vi along the two orthogonal axes, z and
y. Therefore, we must define two phases, ϕz and ϕy and
the Hamiltonian can be spin-wave expanded in terms of
these two fields. The phase ϕz parametrizes rotations
of vi around the z axis (as in the planar - zero torsion
case), whereas ϕy parametrizes rotations of vi around
the y axis. In this fully 3d case the Hamiltonian is given
by [5],

H =

∫
d3x

a3
1

2
ρs

[
(∇ϕz)

2
+ (∇ϕy)

2
]

+
1

2χ

[
s2z + s2y

]
,

(G1)
where ρs = a2J is, as usual, the stiffness. The equations
of motion are,

∂ϕα
∂t

=
δH

δsα
=
sα
χ
, (G2)

∂sα
∂t

= − δH
δϕα

= a2J ∇2ϕα = ∇ · jα , (G3)

with α = y, z, giving rise to two D’Alembert equations,

∂2ϕα
∂t2

− c2s ∇2ϕα = 0 , c2s = ρs/χ . (G4)

In the full 3d case we therefore obtain two, rather than
one, propagating dissipationless modes, along the trans-
verse directions y and z. This is just a manifestation of
Goldstone’s theorem [10].

These equations are exactly the same as for model
G in the Halperin-Hohenberg classification of dynami-
cal universality classes [5, 11]. Model G does not de-
scribe superfluid liquid helium, but an isotropic Heisen-
berg antiferromagnet with staggered magnetization as a
non-conserved order parameter, and total magnetization
as a constant of motion. An experimental realization of
a 3d isotropic antiferromagnet is RbMnF3, a compound
whose dynamics is characterized by the transverse spin-
wave modes (G4). Notice that also in this system there
is superfluid transport. As discussed in the main text,
superfluidity is not restricted to liquid helium II, but it is
rather built into the mathematical details of the theory.
In particular, it is the product of symmetry and conser-
vation laws. In the full 3d case described here (model G)
these ingredients give rise to superfluid transport exactly
as in the planar (He-II) case.

To write (G1) and (G4) we have assumed that the two
excitations ϕz and ϕy are equally likely, so that the only
symmetry breaking direction is that of motion. In fact,
recent studies on individual diffusion in starling flocks
show that gravity is another symmetry breaking direc-
tion, heavily suppressing fluctuations along the vertical
plane [12]. If we identify z with the axis of gravity, this
suppression would imply that rotations of the velocity
around the y axis are suppressed, and therefore that ϕy

is less relevant a degree of freedom than ϕz. This sup-
pression induced by gravity is likely the cause of the
planar-like turns we observe in flocks and it thus justi-
fies the adoption of the simpler planar description of the
main text.

Appendix H: Mutual delay vs reaction time

One may think that the mutual delay between two
birds, τij , is the same as the reaction time, τR, namely
the time between the stimulus provided by j and the
consequential action of i. However, this is not the case.

Let us assume j is the first bird to turn, and that i is
second. By definition of reaction time, i begins its turn
τR seconds after j. However, we do not define τij as the
difference between the starting instants of the two turns:
there is no practical and robust way to do that, because
each birds turns smoothly, so that it is impossible to de-
fine the ‘start’ of the turn. To compute τij we use the
entire trajectory of both birds, by finding the time shift
that maximally overlaps the accelerations of i and j (see
Fig.1). If the function ai(t) were exactly the same as the
function aj(t− τij), then we would have τij = τR. This,
however, is never the case. First of all there is noise,
so that the two curves, ai(t) and aj(t), are only approx-
imately shifted with respect to each other. But more
importantly, the second bird, i, can try to ‘catch up’
during the turn, so that the delay at the end of the turn
is shorter than the delay at the beginning of the turn,
which is the reaction time. In this case, the delay τij
would be a value intermediate between those two times,
hence giving a value smaller than τR. The opposite can
happen too: bird i could in fact lose ground during the
turn, so that the delay at the end of the turn is longer
than the reaction time, and τij is larger than τR.
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Event label N Φ cs (ms−1) ∆cs (ms−1)

20110208 ACQ3 176 0.806 20.20 0.25

20111124 ACQ1 125 0.959 42.64 0.97

20111125 ACQ1 50 0.866 32.38 1.68

20111215 ACQ1 384 0.801 22.74 0.71

20111125 ACQ2 502 0.841 23.86 2.45

20110217 ACQ2 404 0.854 37.70 1.63

20111214 ACQ4 F1 154 0.940 38.46 1.47

20111214 ACQ4 F2 T1 139 0.890 37.32 3.42

20111214 ACQ4 F2 T2 139 0.808 35.40 0.48

20111220 ACQ2 197 0.907 27.54 1.01

20111201 ACQ3 F1 133 0.793 18.82 1.55

20110211 ACQ1 595 0.757 21.96 2.71

TABLE S1. Polarization and speed of propagation. N
is the number of birds in the flock. The polarization is de-
fined as, Φ = ||(1/N)

∑
i vi/vi||. The values of Φ reported

here are on average smaller than those reported in previous
investigations [1, 13]. The reason for this is that previous
data were obtained with cameras sampling at 10Hz, whereas
the present data are obtained at 170Hz. At this sampling fre-
quency experimental noise and wing flapping reduce the po-
larization. This reduction, however, affects equally all flocks
by uniformly rescaling (1− Φ), hence it does not change the
correlation in Fig.3. The speed of propagation of the infor-
mation, cs, is found by fitting the linear regime of the propa-
gation curve, x(t). The error ∆cs on the speed of propagation
cs is obtained from its variability under changing the linear
fitting time interval of x(t).
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FIG. S1. Acceleration correlation function. The correlation function Gij(τ) measures the overlap between the acceleration
of bird i, ai(t) and the time-shifted acceleration of bird j, aj(t − τ), as a function of τ (see Methods). The point where this
overlap is maximum corresponds to the delay τij between the two birds. In the figure we report the correlation function for a
triplet of birds within one of the studied flock.

FIG. S2. Check of the time ordering relation. We report the time ordering relation test for several of our flocks and for
one non-turning flock (lowest-right panel). Temporal consistency requires that τij ∼ τik + τkj , so to have the data scattered
along the identity line with clear correlation. In the case of the non-turning flock, on the other hand, the delays are just
random numbers, so no temporal consistency is found.
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FIG. S3. Ranking and propagation. The ranking curve, r(t) (panels (a) and (c)) and the propagation curve, x(t) =

[r(t)/ρ]1/3 (panels (b) and (d)) are reported for several turning flocks in our pool of data. Together with the data for 3 turning
flocks reported in Fig. 2, these represent all the 12 turning events we analyze. The speed of propagation, cs, is obtained as
the slope of the linear regime of x(t) for early and intermediate times (panels (b) and (d)). Moreover, by fitting the ranking
curve (panels (a) and (c)) to a power law, r(t) = tα, for early and intermediate times, we find on average α = 3.2. Therefore,

x ∼ r1/3 ∼ t1.07, thus supporting the statement that propagation is linear.


